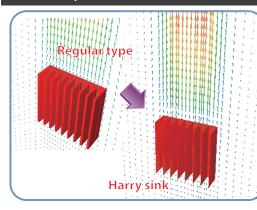
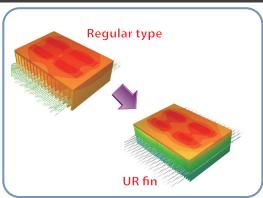

Environmentally Friendly Light Weight Heat Sink

Case Study for Mizutani Electric Ind. Co., Ltd.

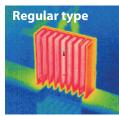

Use of HeatDesigner to Help Design an Environmentally Friendly Heat Sink Also Reduces Prototype Production Tests

More Accurate Thermal Fluid Analysis to Reduce the Number of Prototype Tests														
E.g. 1	Harry S	ink: Ultr	a-thin h	eat sink			E	.g. 2 Ul	R fin: Ult	ra-thin (convect	ion cool	ed heat	sink
Regult	artype (sink (8g)	1. S 2. F 3. N 4. E 5. E	ave resourc Reduce envi otal weight Ainimize siz hrough mir Iliminate en rom manufa Iliminate CC	e and space ituarization vironmenta acturing pro op emissions	Illy threaten	t of materia stics by red iding parts ing substan	ls used ucing nces		gular typ (4,719g)	oe	UR (2,5	: fim 54g)
	Width	Length	Total height	Base thickness	Fin thickness	Number of fins			Width	Length	Total height	Base thickness	Fin thickness	Number of fins
Regular								Regular						

	main	Lengen	height	thickness	thickness	offins	
Regular type	50	50	17	4	1.8	9	
Harry sink	50	50	15	0.3	0.2	8	
		Patent reference: 3130026					

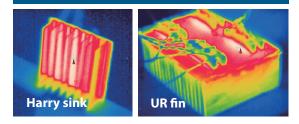


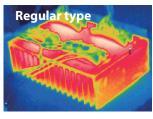
CFD Analysis Results



Test final design model in an actual production environment

Test Results




Natural cooling						
Thermal resistance	Regular type	Harry sink				
Tested value	8.4	7.7				
Analyzed value	8.4	7.5				
		(Units: °C/W)				

Thermal characteristic equivalent to the regular type can be achieved by: - Harry Sink with mass below its one-sixth value

- UR fin with mass below its half value This successfully reduces environmental load.

Ultimately saves energy resources

Forced cooling (front velocity 2 m/s)

Thermal resistance	Regular type	UR fin		
Tested value	0.091	0.090		
Analyzed value	0.092	0.091		
	((Units: °C/W)		

Customer Comments

We used HeatDesigner to develop highly accurate models during the design phase. This resulted in better designs and shortened the development time, two essential factors for success in industry today where engineers are asked to produce high quality products in shorter amounts of time.

